Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Elastic Moduli in Unconventional Superconductor Sr₂RuO₄

Noriki Okuda¹, Takashi Suzuki¹, Zhiqiang Mao^{2,3}, Yoshiteru Maeno^{2,3}, Toshizo Fujita¹

- ¹ Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- ² Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation (CREST-JST), Kawaguchi 332-0012, Japan

Ultrasonic measurements have been performed on single crystals of $\mathrm{Sr_2RuO_4}$ across the superconducting transition temperature T_c (≈ 1.37 K). We observed a jump-like decrease in both longitudinal elastic moduli C_{11} and C_{33} at T_c and estimated strain dependence of T_c from the jump taking account of the Ehrenfest relation. It is remarkable that the in-plane strain dependence ($|dT_\mathrm{c}/d\varepsilon_{xx}|=174$ K) is much greater than that along the crystal c-axis ($|dT_\mathrm{c}/d\varepsilon_{zz}|=38$ K), contrary to the strain response in isostructural cuprate superconductor $\mathrm{La_{2-x}Sr_xCuO_4}$.